六方晶系
編輯在晶體學中,六方晶系是六大晶系之一,包括兩個晶系(六方晶系和三角晶系)和兩個晶格系(六方晶系和菱面體晶系)。 雖然經常混淆,但三角晶系和菱面體晶格系統并不等效(請參閱下面的晶體系統部分)。 尤其是具有三角對稱性但屬于六方晶格的晶體(如α-石英)。
六方晶族由12個點群組成,其空間群中至少有一個空間群以六方晶格為底層晶格,是六方晶系與三角晶系的并集。 與之相關的空間群有 52 個,這些空間群恰好是布拉維晶格為六角形或菱形的空間群。
格系統
編輯六方晶系由兩個晶格系統組成:六方晶系和菱形晶系。 每個晶格系統由一個布拉維晶格組成。
在六方晶族中,晶體通常被描述為直立菱形棱柱晶胞,具有兩個相等的軸(a x a),夾角為 120°(γ),高度(c,可以不同于 a)垂直 到兩個基軸。
菱形布拉維晶格的六角晶胞是以 R 為中心的晶胞,由兩個額外的晶格點組成,它們占據晶胞的一個體對角線。 有兩種方法可以做到這一點,可以將其視為表示相同結構的兩種符號。 在通常所謂的正向設置中,附加格點位于坐標 (2?3, 1?3, 1?3) 和 (1?3, 2?3, 2?3) 處,而在另一種反向設置中 它們位于坐標 (1?3,2?3,1?3) 和 (2?3,1?3,2?3) 處。 在任何一種情況下,每個晶胞總共有 3 個晶格點,并且晶格是非原始的。
六方晶系中的布拉維晶格也可以用菱面體軸來描述。 晶胞是菱形(菱形晶格的名稱)。 這是一個具有參數 a = b = c 的晶胞; α = β = γ ≠ 90°。 在實踐中,更常用六邊形描述,因為它更容易處理兩個90°角的坐標系。 然而,在教科書中經常顯示菱形軸(對于菱形晶格),因為該單元揭示了晶格的 3m 對稱性。
六角布拉維晶格的菱面體晶胞是以 D 為中心的晶胞,由兩個額外的晶格點組成,它們占據晶胞的一個體對角線,坐標為 (1?3, 1?3, 1?3) 和 (2? 3, 2?3, 2?3). 然而,這樣的描述很少被使用。
晶體系統
編輯六方晶族由兩個晶系組成:三角晶系和六方晶系。 晶體系統是一組點群,其中點群本身及其對應的空間群被分配給晶格系統(參見晶體系統#Crystal 類中的表格)。
三角晶系由5個具有單一三重旋轉軸的點群組成,其中包括空間群143至167。這5個點群有7個對應的空間群(用R表示)分配給菱面體晶格系統和18個 分配給六方晶格系統的相應空間群(用 P 表示)。 因此,三方晶系是xxx一種其點群具有多個與其空間群相關聯的晶格系的晶系。
六方晶系由 7 個點群組成,這些點群具有一個單一的六重旋轉軸。 這7個點群有27個空間群(168~194),都歸屬于六方晶格系。
三方晶系
下面列出了該晶體系統中的 5 個點群,以及它們的國際編號和符號、名稱中的空間群和示例晶體。
六方晶系
下面列出了該晶體系統中的 7 個點群(晶體類),然后是它們在 Hermann–Mauguin 或國際符號和 Schoenflies 符號中的表示,以及礦物示例(如果存在)。
密排六方
編輯密排六方 (hcp) 是密度最高的兩種簡單原子堆積之一,另一種是面心立方 (fcc)。 然而,與 fcc 不同的是,它不是 Bravais 晶格,因為有兩組不等價的晶格點。 相反,它可以通過使用與每個晶格點相關聯的雙原子圖案(大約 (2?3, 1?3, 1?2) 處的附加原子)從六角布拉維晶格構建。
多元素結構
編輯由一種以上元素組成的化合物(例如二元化合物)通常具有基于六方晶族的晶體結構。 這里列出了一些更常見的。 這些結構可以被視為兩個或多個相互穿插的子晶格,其中每個子晶格占據其他子晶格的間隙位置。
內容由匿名用戶提供,本內容不代表www.gelinmeiz.com立場,內容投訴舉報請聯系www.gelinmeiz.com客服。如若轉載,請注明出處:http://www.gelinmeiz.com/214848/