特性

結合物體的微粒間距離很小,作用力很大。粒子在各自的平衡位置">平衡位置附近作無規律的振動,固體能保持一定的體積和形狀,流動性差,一般不存在自由移動離子,它們的導電性通常由自由移動電子引起的。在受到不太大的外力作用時,固體的體積和形狀改變很小。固體又分為晶體和非晶體,晶體具有固定的熔化">熔化溫度,非晶體沒有固定的熔化溫度,其固態和液態之間的狀態被稱為“熔融”狀態。
熔化
晶體
晶體有固定的熔化溫度,叫做熔點,與其凝固點相等。晶體吸熱溫度上升,達到熔點時開始熔化,此時溫度不變。晶體完全熔化成液體后,溫度繼續上升。熔化過程中晶體是固液共存態。
非晶體
非晶體沒有固定的熔化溫度。非晶體熔化過程與晶體相似,只不過溫度持續上升,但需要持續吸熱。熔點是晶體的特性之一,不同的晶體熔點不同。
凝固
凝固是熔化的逆過程。實驗表明,無論是晶體還是非晶體,在凝固時都要向外放熱。晶體在凝固過程中溫度保持不變,這個溫度叫晶體的凝固點(solidifying)。同一晶體的凝固點與熔點相同。非晶體沒有凝固點
分類
1.晶狀固體(Crystalline solids):晶體即是內部質點在三維空間呈周期性重復排列的固體。它擁有整齊規則的幾何外形,即晶體的自限性。并擁有固定的熔點,在熔化過程中,溫度始終保持不變。
超固態
當物質處于在140萬大氣壓下,物質的原子就可能被“壓碎”。電子全部被“擠出”原子,形成電子氣體,裸露的原子核緊密地排列,物質密度極大,這就是超固態。一塊乒乓球大小的超固態物質,其質量至少在1000噸以上。
美國科學家宣稱他們可能發現了物質存在的新狀態———超固態(或超固體)。如果他們的發現是正確的話,那么他們見到的則是物質的一種十分奇異的狀態。該狀態下的物質為一種晶體固態,但能像滑潤的、無粘性的液體那樣流動。
存在的爭議
金和陳表示,如果不借用超固體的觀點,他們很難解釋他們發現的現象。然而,加拿大阿爾伯特大學研究人員約翰·比米西卻認為,金和陳的宣稱肯定會引起一些爭議。比如,有學者可能會認為,實驗中部分液態氦仍然覆蓋在維克玻璃多孔的表壁并變成超流體,導致玻璃多孔盤旋轉加快。但金和陳堅持認為他們的發現不像是比米西所說的這種情況。
固體物理學
研究對象
固體物理學(英文solid-state physics)是研究固體的性質、它的微觀結構及其各種內部運動,以及這種微觀結構和內部運動同固體的宏觀性質的關系的學科。固體的內部結構和運動形式很復雜,這方面的研究是從晶體開始的,因為晶體的內部結構簡單,而且具有明顯的規律性,較易研究。以后進一步研究一切處于凝聚狀態的物體的內部結構、內部運動以及它們和宏觀物理性質的關系。這類研究統稱為凝聚態物理學。
固體物理學是研究固體物質的物理性質、微觀結構、構成物質的各種粒子的運動形態,及其相互關系的科學。它是物理學中內容極豐富、應用極廣泛的分支學科。
晶體結構
在相當長的時間里,人們研究的固體主要是晶體。早在18世紀,阿維對晶體外部的幾何規則性就有一定的認識。后來,布喇格在1850年導出14種點陣。費奧多羅夫在1890年、熊夫利在1891年、巴洛在1895年,各自建立了晶體對稱性的群理論。這為固體的理論發展找到了基本的數學工具,影響深遠。
非晶體
非晶態固體的物理性質同晶體有很大差別,這同它們的原子結構、電子態以及各種微觀過程有密切聯系。從結構上來分,非晶態固體有兩類。一類是成分無序,在具有周期性的點陣位置上隨機分布著不同的原子或者不同的磁矩;另一類是結構無序,表征長程序的周期性完全破壞,點陣失去意義。但近鄰原子有一定的配位關系,類似于晶體的情形,因而仍然有確定的短程序。
例如,金屬玻璃是無規密積結構,而非晶硅是四面體鍵組成的無規網絡。20年代發現,并在70年代得到發展的擴展。X射線吸收精細結構譜技術,成為研究非晶態固體原子結構的重要手段。
展望
新的實驗條件和技術日新月異,正為固體物理不斷開拓新的研究領域。極低溫、超高壓、強磁場等極端條件、超高真空技術、表面能譜術、材料制備的新技術、同步輻射技術、核物理技術、激光技術、散射效應" target="_blank">光散射效應、各種粒子束技術、電子顯微術、穆斯堡爾效應、正電子湮沒技術、磁共振技術等現代化實驗手段,使固體物理性質的研究不斷向深度和廣度發展。由于固體物理本身是微電子技術、光電子學技術、能源技術、材料科學等技術學科的基礎,也由于固體物理學科內在的因素,固體物理的研究論文已占物理學中研究論文三分之一以上。其發展趨勢是:由體內性質轉向研究表面有關的性質;由三維體系轉到低維體系;由晶態物質轉到非晶態物質;由平衡態特性轉到研究瞬態和亞穩態、臨界現象和相變;由完整晶體轉到研究晶體中的雜質、缺陷和各種微結構;由普通晶體轉到研究超點陣的材料。這些基礎研究又將促進新技術的發展,給人們帶來實際利益。同時,固體物理學的成就和實驗手段對化學物理、催化學科、生命科學、地學等的影響日益增長,正在形成新的交叉領域。
內容由匿名用戶提供,本內容不代表www.gelinmeiz.com立場,內容投訴舉報請聯系www.gelinmeiz.com客服。如若轉載,請注明出處:http://www.gelinmeiz.com/3140/